Theoretical Glaciology

Material Science of Ice and the Mechanics of Glaciers and Ice Sheets
TABLE OF CONTENTS

ACKNOWLEDGEMENTS

PREFACE

INTRODUCTION

SYMBOLS AND NOTATION

PART I. FUNDAMENTAL PHYSICS AND MATERIALS TECHNOLOGY OF ICE

Chapter 1. General Concepts

1. Introduction

2. Equations of Balance

3. Material Response
 - General constitutive relations, simple materials
 - The rule of material objectivity
 - Material symmetry
 - Constitutive response for isotropic bodies
 - Materials with bounded memory - some constitutive representations
 - Incompressibility
 - Some representations of isotropic functions

4. The Entropy Principle
 - The viscous heat-conducting compressible fluid
 - The viscous heat-conducting incompressible fluid
 - Pressure and extra stress as independent variables
 - Thermoelastic solid
 - Final remarks

5. Phase Changes
 - Phase changes for a viscous compressible heat-conducting fluid
TABLE OF CONTENTS

(b) Phase changes for a viscous incompressible heat-conducting fluid
References 46

Chapter 2. A Brief Summary of Constitutive Relations for Ice 48

1. Preliminary Remarks 48
2. The Mechanical Properties of Hexagonal Ice
 (a) The crystal structure of ordinary ice 49
 (b) The elastic behavior of hexagonal ice 52
 (c) The inelastic behavior of single-crystal ice 56
3. The Mechanical Properties of Polycrystalline Ice
 (a) The elastic behavior of polycrystalline ice 60
 (b) Linear viscoelastic properties of polycrystalline ice 63
 (x) General theory 63
 (β) Experimental results 77
 (c) Non-linear viscous deformation and creep 81
 (x) Results of creep tests 81
 (β) Generalization to a three-dimensional flow law 85
 (γ) Other flow laws 91
4. The Mechanical Properties of Sea Ice
 (a) The phase diagram of standard sea ice and its brine content 99
 (b) Elastic properties 103
 (c) Other material properties 105
References 110

PART II. THE DEFORMATION OF AN ICE MASS UNDER ITS OWN WEIGHT

Chapter 3. A Mathematical Ice-flow Model and its Application to Parallel-sided Ice Slabs 119

1. Motivation and Physical Description 119
2. The Basic Model – Its Field Equations and Boundary Conditions
 (a) The field equations 124
 (x) Cold ice region 124
 (β) Temperate ice region 126
 (b) Boundary conditions 131
 (x) At the free surface 132
 (β) Along the ice-water interface 136
 (γ) Along the bedrock surface 138
 (δ) Along the melting surface 143
3. The Response of a Parallel-sided Ice Slab to Steady Conditions
 (a) Dimensionless forms of the field equations 145
 (β) Parallel-sided ice slab, a first approximation to glacier and ice-shelf flow dynamics 154
 (x) Velocity and temperature fields ¯-independent 155
 (γ) Extending and compressing flow 166
 (β) Floating ice shelves 179
4. Concluding Remarks 183
References 184

Chapter 4. Thermo-mechanical Response of Nearly Parallel-sided Ice Slabs Sliding over their Bed 188

1. Motivation 188
2. The Basic Boundary-value Problem and its Reduction to Linear Form 190
3. The Solution of the Boundary-value Problems 199
 (a) Zeroth-order problem 199
 (b) First-order problem 200
 (x) Harmonic perturbation from uniform flow for a zero accumulation rate 202
 (β) Analytic solution for a Newtonian fluid 204
 (γ) Numerical solution for non-linear rheology 208
 (δ) Effect of a steady accumulation rate 212
 (ε) A historical note on a previous approach 214
 (ν) The first-order temperature problem 215
 (c) Numerical results for steady state 218
 (x) Transfer of bottom protuberances to the surface 220
 (β) Basal stresses 230
 (γ) Surface velocities 236
 (δ) Effect of a steady accumulation rate 240
4. Remarks on Response to a Time-dependent Accumulation Rate 242
5. Surface-wave Stability Analysis
 (a) The eigenvalue problem 244
 (b) Discussion of results 249
6. Final Remarks 252
References 253

Chapter 5. The Application of the Shallow-ice Approximation 256

1. Background and Previous Work 256
2. Derivation of the Basal Shear-stress Formula by Integrating the Momentum Equations over Ice Thickness 260
 (a) Derivation 260
 (b) The use of the basal shear-stress formula in applied glaciology 264
3. Solution of the Ice-flow Problem using the Shallow-ice Approximation
 (a) Governing equations 268
 (b) Shallow-ice approximation 270
 (c) Construction of the perturbation solution 274
TABLE OF CONTENTS

(d) Results 282
(e) Temperature field 289

4. Theoretical Steady-state Profiles 292
(a) Earlier theories and their limitations 292
(b) Surface profiles determined by using the shallow-ice approximation 298

5. An Alternative Scaling – a Proper Analysis of Dynamics of Ice Sheets with Ice Divides 309
(a) Finite-bed inclination 314
(b) Small-bed inclination 316
(c) Illustrations 321

References 330

Chapter 6. The Response of a Glacier or an Ice Sheet to Seasonal and Climatic Changes 333
1. Statement of the Problem 333
2. Development of the Kinematic Wave Theory 336
(a) Full non-linear theory 336
(b) Perturbation expansion – linear theory 341
(c) An estimate for the coefficients C and D 342
(d) Boundary and initial conditions 346

3. Theoretical Solutions for a Model Glacier 346
(a) Solutions neglecting diffusion 347
(b) Theoretical solutions for a diffusive model 353
(α) Coefficient functions for the special model 353
(β) Solution for a step function 355
(\gamma) General solution for uniform accumulation rate 363
(\delta) The inverse problem – calculation of climate from variations of the snout 367

4. General Treatment for an Arbitrary Valley Glacier 369
(a) Fourier analysis in time 370
(α) Low-frequency response 371
(β) High-frequency response 373
(\gamma) Use of the results 374
(b) Direct integration methods 375

5. Derivation of the Surface-wave Equation from First Principles – Non-linear Theory 377
(a) Surface waves in the shallow-ice approximation 379
(α) Integration by the methods of characteristics 382
(β) An illustrative example 392
(\gamma) A remark on linearization 398
(\delta) Effects of diffusion 400
(b) Remarks regarding time-dependent surface profiles in ice sheets 403

(c) Long waves in an infinite ice slab – Is accounting for diffusion enough? 404
(α) Basic equations 405
(β) Construction of perturbation solutions 407
(\gamma) Numerical results 416

6. Concluding Remarks 420

References 421

Chapter 7. Three-dimensional and Local Flow Effects in Glaciers and Ice Sheets 424
1. Introduction 424
2. Effect of Valley Sides on the Motion of a Glacier 425
(a) Solutions in special cases 428
(α) Exact solutions for the limiting cases 428
(β) Solution for a slightly off-circular channel 431
(\gamma) A note on very deep and wide channels 434
(b) A useful result for symmetrical channels with no boundary slip 438
(c) Numerical solution – discussion of results 441

3. Three-dimensional Flow Effects in Ice Sheets 450
(a) Basic equations 451
(b) Decoupling of the stress-velocity problem from the problem of surface profile 455
(c) The equation describing the surface geometry 460
(d) The margin conditions 461

4. Variational Principles 462
(a) Fundamental variational theorem 463
(b) Variational principle for velocities 467
(c) Reciprocal variational theorem 468
(d) Maximum and minimum principles 471
(e) Adoption of the variational principles to ice problems 474

5. Discussion of Some Finite-element Solutions 476

References 482

Appendix. Detailed Calculations Pertaining to Higher-order Stresses in the Shallow-ice Approximation 484

AUTHOR INDEX 490

SUBJECT INDEX 494