Fractal Models in the Earth Sciences

G. Korvin
Department of Geology and Geophysics
University of Adelaide
P.O. Box 498, Adelaide, S.A. 5001, Australia
Contents

Preface ... VII
Acknowledgements for reproductions of previously published material XI

1 What on earth fractal? ... 1
1.1 The self-similarity of rivers ... 1
1.2 How long is the Vistula river? .. 11
1.3 The paradox of tortuosity: permeability of kaolinite-bearing sandstones 17
1.3.1 The permeability of shaly sandstones .. 17
1.3.2 Basic concepts of percolation theory .. 21
1.3.3 Percolation models of rock permeability ... 30
1.4 Deadly quarrels and coastlines .. 34
1.4.1 The coastline of Britain ... 34
1.4.2 A fractal model of coastal erosion .. 40
1.4.3 Bifractal coastlines ... 47
1.5 The perimeter–area rule of Mandelbrot .. 55
1.5.1 Islands and lakes ... 55
1.5.2 The fractal shape of clouds .. 62
1.5.3 The “slit island” analysis of fracture surfaces ... 66
A Mathematical appendix .. 73
A.1 The functional equations of similarity ... 73
A.2 Fractal curves are hot .. 77
References .. 81

2 Fractals in Flatland: a romance of \(<2\) dimensions ... 87
2.1 The paradox of sedimentation rate .. 87
2.1.1 Stratigraphic hiatuses and sedimentation rate ... 87
2.1.2 From the Cantor dust to the Devil’s staircase .. 90
2.1.3 A fractal model for stratigraphic hiatuses ... 95
2.1.4 Sadler’s model of unsteady sedimentation and its fractal generalisation ... 102
2.2 Fractal analysis along a line: slip lines and fractures 113
2.3 Strange attractors, aggregates and geophysical networks 118
2.3.1 Fractal characterisation of geophysical measuring networks 120
2.4 Fractals in the plane: fractures–earthquakes–volcanoes 127
2.4.1 Cellular structures .. 127
2.4.2 Fracture networks, faults and earthquakes ... 144
A2 Mathematical appendix ... 171
A2.1 Different kinds of fractal dimensions and their numerical determination ... 171
References .. 180