ANCHORING IN ROCK AND SOIL

second completely revised edition

by

Dr. Ing. LEOŠ HOBST
Research Institute of Civil Engineering, Brno (VÚIS)

and

Ing. JOSEF ZAJÍČ CSc
Engineering Geology, Prague (Stavební geologie)
CONTENTS

Preface to the 2nd English edition ... V

Contents ... VII

Relation of SI units to earlier used units XIV

PART A — Principles of anchoring structures in rock and soil 1

Chapter 1. Introduction .. 2
1.1 Treatment of the subject ... 2
1.2 Principles of anchoring into the ground 3
1.3 Special terms ... 6

Chapter 2. Securing structures against vertical displacement 8

Chapter 3. Securing structures against overturning 12

Chapter 4. Securing structures against displacement along the foundation line .. 18

Chapter 5. Securing structures against shear failure along a critical surface in the ground .. 25

Chapter 6. Stabilization of rocks and the securing of underground structures against caving in 29

Chapter 7. The use of anchors for the preconsolidation of the ground 36

Chapter 8. Effect of anchoring on the seismic stability of structures 38

Chapter 9. Suitability of rocks and soils for anchoring 43

9.1 Types of rocks and soils ... 43
9.2 Investigation of rocks and soils 47
9.3 Methods of transferring tensile forces to the ground 53
 9.3.1 Bracing of anchors ... 53
 9.3.2 Fixing of the anchor by cementing 54
 9.3.3 Fixing of the anchor by an abutting base 56
9.4 Evaluation of rocks and soils with regard to anchoring 57
Chapter 10. Embedding depth of anchors in rocks and soils

10.1 Anchoring depth in hard rocks
10.2 Anchoring depth in damaged or soft rocks
10.3 Anchoring depth in non-cohesive soils
 10.3.1 Anchoring depth in dry loose soils
 10.3.2 Anchoring depth in saturated loose soils
10.4 Anchoring depth in cohesive soils

PART B—Anchor design and anchoring technology

Chapter 11. Materials used in the construction of anchors (tendon material)

11.1 Materials for the construction of bar anchors
11.2 Prestressing wire
11.3 Strands and cables

Chapter 12. Preparation of anchors

12.1 Preparation of bar anchors
12.2 Construction of multi-wire anchors
12.3 Construction of anchors from strands

Chapter 13. Fixing of anchors in rock and soil

13.1 Mechanical fixing of anchors
 13.1.1 Fixing by thrust (wedge base)
 13.1.2 Fixing by tension (tensile base)
 13.1.3 Fixing by screwing (threaded base)
 13.1.4 Fixing of hollow bolts by expansion (friction bolts)
 13.1.5 Controlled yielding bolts
13.2 Fixing of anchors with cement
 13.2.1 Design of anchors fixed with cement
 13.2.1.1 Cohesion between grout and rock
 13.2.1.2 Cohesion between grout and soil
 13.2.1.3 Cohesion between grout and steel components of anchor root
 13.2.2 Technology of fixing anchors by grouting
 13.2.2.1 Short bar anchors (bolts)
 13.2.2.2 Long anchors in hard rock
 13.2.2.3 Grouted anchors in loose soils
 13.2.2.4 Grouted anchors in cohesive soils
 13.2.3 Fixing of anchors with synthetic resins
 13.2.4 Fixing of anchors by means of both cement and a mechanical base
PART C — Design and construction of anchored structures

Chapter 20 Anchoring of underground excavations

20.1 Pressures acting on rock spaces and the calculation of anchorage parameters

20.1.1 Rock beam theory
20.1.2 Natural arch theory
20.1.3 Effect of natural planes of discontinuity

20.2 Anchorage design for underground excavations

20.2.1 Analytical procedure
20.2.2 Empirical procedure
20.2.3 New Austrian tunnel driving method

20.3 Examples of the anchoring of underground excavations

20.3.1 Anchoring of the roof of an excavation
20.3.2 Anchoring of communications tunnels
20.3.3 Anchoring of small openings, rock pillars, galleries and shafts
20.3.4 Stabilization of large underground caverns

Chapter 21 Stabilization of rock and soil slopes by anchoring

21.1 Calculation of anchoring forces

21.1.1 Soil slopes
21.1.2 Rock slopes
21.1.3 Dimensioning of non-prestressed anchors

21.2 Structural anchoring methods

21.2.1 Stabilization of slopes
21.2.2 Securing of rock blocks
21.2.3 Protection of the surfaces of rock slopes

21.3 Examples of slope stabilization by anchoring

21.3.1 Stabilization using prestressed anchors
21.3.2 Stabilization of slopes with non-prestressed anchors

Chapter 22 Anchoring of walled excavations

22.1 Earth and rock pressures on retaining walls

22.1.1 Earth pressure
22.1.2 Pressure of hard rocks on retaining walls

22.2 Design of anchorage for cased excavations

22.2.1 Retaining walls suitable for anchoring
22.2.2 Calculation of anchoring forces

22.2.2.1 Anchoring forces along one level of the retaining wall
22.2.2.2 Anchoring forces along several levels of the retaining wall
22.2.3 Stability assessment of anchored retaining walls 422
 22.2.3.1 Internal stability .. 423
 22.2.3.2 Verification of internal stability under various anchoring conditions 425
 22.2.3.3 External (overall) stability 427
22.3 Examples of anchored walls and the monitoring of their function 428

Chapter 23 Anchoring of slope retaining walls 444
 23.1 Calculation of anchoring forces and the design of anchor fixings 446
 23.2 Structural arrangement of anchored slope retaining walls 448
 23.2.1 Precast slope retaining walls 449
 23.2.2 Cantilever retaining walls 450
 23.2.3 Retaining walls on steep slopes 453

Chapter 24 Anchoring of concrete dams 459
 24.1 Anchoring of concrete dams by non-prestressed anchorage 459
 24.2 Anchoring of concrete dams by prestressed anchorage 461
 24.2.1 Design of anchorage for gravity dams 462
 24.2.2 Anchoring design for multiple dams 468
 24.3 Examples of concrete dams anchored in the bedrock 468
 24.3.1 Reconstruction of concrete dams with anchoring in the bedrock 468
 24.3.2 Gravity concrete dams anchored in the bedrock 479
 24.3.3 Multiple dams anchored in the bedrock 483
 24.3.4 Anchoring of weirs and the functional parts of earth dams into the bedrock ... 486
 24.3.5 Anchoring of cofferdams in the bedrock 488

Chapter 25 Anchoring of bridge structures 492

Chapter 26 Anchoring of foundations 497
 26.1 Preconsolidation of the substratum under load-distributing foundations 497
 26.2 Foundations loaded by tangential forces 498
 26.3 Eccentrically loaded foundations 501
 26.4 Anchored blocks under tensile loads 507

Chapter 27 Stabilization of foundation basins and sunken reservoirs 514

Chapter 28 Anchoring of the loading equipment in field tests 523
 82.1 Test loading of the foundation ground 523
 28.2 Test loading of piles ... 531
 28.3 Shear testing of blocks ... 538
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.4 Tear testing of rock for the determination of shear strength</td>
<td>539</td>
</tr>
<tr>
<td>Chapter 29 Anchoring and the economies and safety of structures</td>
<td>542</td>
</tr>
<tr>
<td>29.1 Economies in surface structures</td>
<td>542</td>
</tr>
<tr>
<td>29.2 Economies in underground structures</td>
<td>548</td>
</tr>
<tr>
<td>29.3 Increase of safety</td>
<td>551</td>
</tr>
<tr>
<td>References</td>
<td>552</td>
</tr>
<tr>
<td>Index</td>
<td>562</td>
</tr>
</tbody>
</table>