RECOMMENDATIONS FOR THE DESIGN, CALCULATION, CONSTRUCTION AND MONITORING OF GROUND ANCHORAGES

Edited by
P. HABIB

A.A. BALKEMA / ROTTERDAM / BROOKFIELD / 1989
Table of contents

Foreword to the first edition .. XI
Foreword to the third edition ... XIII
Members of the Working Group .. XV
List of symbols ... XVII

1 INTRODUCTION

1.1 Scope of the book .. 1
1.2 Importance of the problem and its topical interest 2
1.3 Nature of this volume .. 2
1.4 Importance of workmanship in ground anchorage construction 3
1.5 Contracting firms and their obligations 3
1.6 Methodology for ground anchorage design 3

2 DEFINITIONS

2.1 Definitions concerning the successive phases in the service life of a ground anchorage ... 5
2.2 Definitions concerning forces acting on ground anchorages 7
 2.2.1 Limit load ... 7
 2.2.2 Allowable load ... 7
2.3 Definitions related to design characteristics of ground anchorages ... 8

3 MATERIALS SPECIFICATIONS

3.1 Steel ... 10
 3.1.1 Type of steels ... 10
 3.1.2 Allowable loads .. 11
 3.1.3 Important comment .. 12
3.2 Bonding cement .. 12
 3.2.1 General ... 12
VI Table of contents

3.2.2 Choice of cement as a function of the aggressivity of surrounding ground 12
3.2.3 Choice of cement according to aggressivity to tendons 15
3.2.4 Recapitulation of the choice of cement in relation to the two preceding criteria 15
3.2.5 Admixtures and additives 16
3.3 Resins for bonding and protection from corrosion 16
 3.3.1 Bonding resins 16
 3.3.2 Resins for protection against corrosion 16

4 CORROSION PROTECTION OF GROUND ANCHORAGES

4.1 General 17
 4.1.1 Tendons 17
 4.1.2 Ordinary steels 17
 4.1.3 Prestressing steels 18
 4.1.4 Nomenclature of protection for the different parts of anchorages 18
4.2 Parameters influencing the degree of corrosion protection needed for prestressed anchorages 18
 4.2.1 Service life 18
 4.2.2 Type of environment 19
4.3 Corrosion protection of the free length of prestressed anchorages 19
 4.3.1 Classification of corrosion protection 19
 4.3.2 Definition of Grade P0 20
 4.3.3 Definition of Grade P1 21
 4.3.4 Definition of Grade P2 21
4.4 Choice of corrosion protection for the free length 21
 4.4.1 Choice of protection grade 21
 4.4.2 Choice of the type of protection 22
 4.4.3 Choice between protection before and after stressing 23
4.5 Quality criteria required of corrosion protection along the fixed anchor length 23
 4.5.1 General conditions 23
 4.5.2 Case 1: Grade P1 protection is required 24
 4.5.3 Case 2: Grade P2 protection is required 25
4.6 Protection of fixed anchorage length 26
4.6.1 Requirements	26
4.6.2 Grade P1 protection	26
4.6.3 Grade P2 protection	27
4.7 Protection of the anchorage head and anchor-structure connection	28
4.7.1 General	28
4.7.2 Principles of connection area corrosion protection common to P1 and P2	29
4.7.3 Additional specific provisions for P2 protection	30
4.8 Corrosion protection operations	31
4.8.1 Timing	31
4.8.2 Conditions of placing corrosion protection	31
4.9 Provisions specific to each system	33

5 CONSTRUCTION AND INSTALLATION OF GROUND ANCHORAGES

5.1 General	34
5.2 Drilling	34
5.3 Tendon installation	35
5.3.1 Scope	35
5.4 Bonding the anchorage in the ground	35
5.4.1 General	35
5.4.2 Techniques excluding grouts or mortars	35
5.4.3 Techniques using grouts and mortars	36
5.5 Stressing	36
5.5.1 General	36
5.5.2 Characteristic stressing loads	37
5.5.3 Stressing equipment and device	41
5.5.4 Application of proof test T_e	44
5.5.5 Tendon lock-off and release of jack pressures	48
5.6 Release of tension in temporary anchorages	50

6 ANCHORAGE TESTING

| 6.1 Definitions, objectives and advisability of the various tests | 52 |
| 6.1.1 Various types of tests | 52 |
6.1.2 Objectives of the tests: General specifications

6.1.3 Advisability of tests, obligations of the different contracting parties (temporary and permanent anchorages)

6.2 Preliminary proving tests

6.2.1 Aim of preliminary proving tests

6.2.2 Re-use of test anchorages

6.2.3 Number of test anchorages to be provided

6.2.4 Date of testing

6.2.5 Location of test anchorages

6.2.6 Installation of test anchorages and any supporting structure

6.2.7 Equipment and apparatus for carrying out preliminary proving tests

6.2.8 Procedure for preliminary proving tests and interpretation of results

6.3 On-site proving tests

6.3.1 General

6.3.2 Number of test anchors to be provided

6.3.3 Date of testing

6.3.4 Test equipment and installation

6.3.5 Procedure for on-site proving tests

6.3.6 Interpretation of results: Anchor acceptance criteria

6.4 Suitability tests

6.4.1 General

6.4.2 Number of test anchors

6.4.3 Test equipment and installations

6.4.4 Procedure for suitability tests

6.4.5 Acceptance criteria of anchorages subjected to suitability tests

6.5 Acceptance tests

6.5.1 General

6.5.2 Test method

6.5.3 Duration of anchorage testing and measurement intervals

6.5.4 Acceptance criteria
7 PERIODIC MONITORING OF THE RESIDUAL LOAD

7.1 Advisability of monitoring the residual load 87
7.2 Procedure for monitoring permanent anchorages 87
 7.2.1 Liability for the monitoring 87
 7.2.2 Duration and frequency of the monitoring 87
 7.2.3 Monitoring system 88

8 RECOMMENDATIONS TO OWNERS

8.1 Introduction 90
8.2 Ground anchorage technology 90
8.3 Corrosion protection 91
8.4 Tests 91
8.5 Periodic long-term monitoring 91
8.6 Authorization for placing, dues 91
8.7 Specific structural provisions for anchored structures 92
8.8 Written data and technical specifications 92

APPENDIX 1: STABILITY OF RETAINING STRUCTURES

A1.1 Conditions of stability 94
A1.2 Equilibrium of an isolated wall 94
 A1.2.1 Horizontal components of force (Fig. A1.2) 94
 A1.2.2 Vertical components of forces (Figs. A1.3 and A1.4) 96
A1.3 Anchorage resistance 96
A1.4 Overall stability 97
 A1.4.1 Equilibrium of a mass with a single level of anchorages 97
 A1.4.2 Equilibrium of a mass under the action of several levels of anchorages 101
A1.5 Overall stability in surrounding soil 101
APPENDIX 2: VERIFICATION OF OVERALL STABILITY OF VERTICAL ANCHORAGES FOR RAFT CONSTRUCTION

A2.1 Method
 A2.1.1 Principle 102
 A2.1.2 Practical method 102
A2.2 Associated unit volume (influence cone) 102
 A2.2.1 Real configuration 102
 A2.2.2 Practical volume in homogeneous soil 103
 A2.2.3 Practical volume in stratified soil 104
 A2.2.4 Practical volume in a homogeneous soil overloaded with a frictionless soil 105
 A2.2.5 Practical volume in a homogeneous soil under a uniformly distributed excess load 105
 A2.2.6 Limit value of the half-angle at the top β 105
A2.3 Reduction of the influence volume 105
 A2.3.1 Principle 105
 A2.3.2 Reduction of F 105
 A2.3.3 Practical formula 106

APPENDIX 3: GUIDE TO PRELIMINARY DESIGN OF ANCHORAGES

A3.1 Reminder 108
A3.2 Tendon design 108
A3.3 Calculation of the free length \(L_L \) 108
A3.4 Calculation of anchor length \(L_S \)
 A3.4.1 Statement of requirements 108
 A3.4.2 Non-slippage requirement 109
 A3.4.3 Methods of determining anchor length 109