Block Theory and Its Application to Rock Engineering

Richard E. Goodman

Gen-hua Shi
Both of University of California, Berkeley

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632
Contents

PREFACE

| xi |

NOTATION AND ABBREVIATIONS

| xiii |

1 INTRODUCTION

| 1 |

- Excavations 3
- Modes of Failure 4
- Assumptions of Block Theory 9
- Comparison of Block Theory with Other Analytical Approaches 11
- The Key Block System 19

2 DESCRIPTION OF BLOCK GEOMETRY AND STABILITY USING VECTOR METHODS

| 24 |

- Equations of Lines and Planes 25
- Description of a Block 31
- Angles in Space 40
- The Block Pyramid 41
- Equations for Forces 43
- Computation of the Sliding Direction 45
- Example Calculations 48
3 GRAPHICAL METHODS: STEREOGRAPHIC PROJECTION

Types of Projections 57
Stereographic Projection of Lines and Planes 64
Stereographic Projection of a Joint Pyramid 75
Additional Constructions for Stereographic Projection 78
Projection of Sliding Direction 83
Examples 85
Appendix: Important Properties of the Stereographic Projection 92

4 THE REMOVABILITY OF BLOCKS

Types of Blocks 98
Theorem of Finiteness 101
Theorem on the Removability of a Finite, Convex Block 108
Symmetry of Block Types 112
Proofs of Theorems and Further Discussion 112
Shi's Theorem for the Removability of Nonconvex Blocks 121

5 JOINT BLOCKS

Joint Blocks in Two Dimensions 130
Joint Blocks in Three Dimensions 134
Stereographic Projection Solution for Joint Blocks 138
Computation of Emptiness of Joint Pyramids Using Vectors 147
Applications of Block Theory: An Example 149

6 BLOCK THEORY FOR SURFICIAL EXCAVATIONS

Basic Concepts 157
Conditions for Removability of Blocks Intersecting Surface Excavations 166
Identification of Key Blocks Using Stereographic Projection 169
Evaluation of Finiteness and Removability of Blocks Using Vector Methods 179
The Numbers of Blocks of Different Types in a Surface Excavation 183
Procedures for Designing Rock Slopes 188
Removable Blocks in an Excavated Face 198
Appendix: Solution of Simultaneous Equations (6.19) to (6.22) 201
7 BLOCK THEORY FOR UNDERGROUND CHAMBERS

Key Blocks in the Roof, Floor, and Walls 204
Blocks That Are Removable in Two Planes Simultaneously: Concave Edges 206
Blocks That Are Removable in Three Planes Simultaneously: Concave Corners 211
Example: Key Block Analysis for an Underground Chamber 214
Choice of Direction for an Underground Chamber 225
Intersections of Underground Chambers 232
Pillars between Underground Chambers 236
Comparison of Vector Analysis and Stereographic Projection Methods 238

8 BLOCK THEORY FOR TUNNELS AND SHAFTS

Geometric Properties of Tunnels 241
Blocks with Curved Faces 244
Tunnel Axis Theorem 249
Types of Blocks in Tunnels 249
The Maximum Key Block 251
Computation of the Maximum Removable Area Using Vector Analysis 253
Computation of the Maximum Key Block Using Stereographic Projection Methods 271
Removable Blocks of the Portals of Tunnels 279
Appendix: Proofs of Theorems and Derivations of Equations 287

9 THE KINEMATICS AND STABILITY OF REMOVABLE BLOCKS

Modes of Sliding 296
The Sliding Force 301
Kinematic Conditions for Lifting and Sliding 304
Vector Solution for the JP Corresponding to a Given Sliding Direction 306
Stereographic Projection for the JP Corresponding to a Given Sliding Direction 307
Comparison of Removability and Mode Analyses 310
Finding the Sliding Direction for a Given JP 310
Mode and Stability Analysis with Varying Direction for the Active Resultant Force 313
Appendix: Proofs of Propositions 325