CONTENTS

Preface ix

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 EXAMPLES AND CAUSES OF SLOPE FAILURE 5
Examples of Slope Failure 5
Causes of Slope Failure 14
Summary 17

CHAPTER 3 SOIL MECHANICS PRINCIPLES 19
Drained and Undrained Conditions 19
Total and Effective Stresses 21
Drained and Undrained Shear Strengths 22
Basic Requirements for Slope Stability Analyses 26

CHAPTER 4 STABILITY CONDITIONS FOR ANALYSES 31
End-of-Construction Stability 31
Long-Term Stability 32
Rapid (Sudden) Drawdown 32
Earthquake 33
Partial Consolidation and Staged Construction 33
Other Loading Conditions 33

CHAPTER 5 SHEAR STRENGTHS OF SOIL AND MUNICIPAL SOLID WASTE 35
Granular Materials 35
Silt 40
Clays 44
Municipal Solid Waste 54

CHAPTER 6 MECHANICS OF LIMIT EQUILIBRIUM PROCEDURES 55
Definition of the Factor of Safety 55
Equilibrium Conditions 56
Single Free-Body Procedures 57
Procedures of Slices: General 63
CHAPTER 7 METHODS OF ANALYZING SLOPE STABILITY

Simple Methods of Analysis 103
Slope Stability Charts 105
Spreadsheet Software 107
Computer Programs 107
Verification of Analyses 111
Examples for Verification of Stability Computations 112

CHAPTER 8 REINFORCED SLOPES AND EMBANKMENTS

Limit Equilibrium Analyses with Reinforcing Forces 137
Factors of Safety for Reinforcing Forces and Soil Strengths 137
Types of Reinforcement 139
Reinforcement Forces 139
Allowable Reinforcement Forces and Factors of Safety 141
Orientation of Reinforcement Forces 142
Reinforced Slopes on Firm Foundations 142
Embankments on Weak Foundations 145

CHAPTER 9 ANALYSES FOR RAPID DRAWDOWN

Drawdown during and at the End of Construction 151
Drawdown for Long-Term Conditions 151
Partial Drainage 160

CHAPTER 10 SEISMIC SLOPE STABILITY

Analysis Procedures 161
Pseudostatic Screening Analyses 164
Determining Peak Accelerations 165
Shear Strength for Pseudostatic Analyses 166
Postearthquake Stability Analyses 169

CHAPTER 11 ANALYSES OF EMBANKMENTS WITH PARTIAL CONSOLIDATION OF WEAK FOUNDATIONS

Consolidation during Construction 175
Analyses of Stability with Partial Consolidation 176
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>178</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Behavior of an Embankment Constructed in Stages</td>
<td>178</td>
</tr>
<tr>
<td>Discussion</td>
<td>179</td>
</tr>
<tr>
<td>CHAPTER 12 ANALYSES TO BACK-CALCULATE STRENGTHS</td>
<td>183</td>
</tr>
<tr>
<td>Back-Calculating Average Shear Strength</td>
<td>183</td>
</tr>
<tr>
<td>Back-Calculating Shear Strength Parameters Based on Slip Surface Geometry</td>
<td>185</td>
</tr>
<tr>
<td>Examples of Back-Analyses of Failed Slopes</td>
<td>187</td>
</tr>
<tr>
<td>Practical Problems and Limitation of Back-Analyses</td>
<td>195</td>
</tr>
<tr>
<td>Other Uncertainties</td>
<td>197</td>
</tr>
<tr>
<td>CHAPTER 13 FACTORS OF SAFETY AND RELIABILITY</td>
<td>199</td>
</tr>
<tr>
<td>Definitions of Factor of Safety</td>
<td>199</td>
</tr>
<tr>
<td>Factor of Safety Criteria</td>
<td>200</td>
</tr>
<tr>
<td>Reliability and Probability of Failure</td>
<td>200</td>
</tr>
<tr>
<td>Standard Deviations and Coefficients of Variation</td>
<td>202</td>
</tr>
<tr>
<td>Coefficient of Variation of Factor of Safety</td>
<td>205</td>
</tr>
<tr>
<td>Reliability Index</td>
<td>206</td>
</tr>
<tr>
<td>Probability of Failure</td>
<td>206</td>
</tr>
<tr>
<td>CHAPTER 14 IMPORTANT DETAILS OF STABILITY ANALYSES</td>
<td>213</td>
</tr>
<tr>
<td>Location of Critical Slip Surfaces</td>
<td>213</td>
</tr>
<tr>
<td>Examination of Noncritical Shear Surfaces</td>
<td>219</td>
</tr>
<tr>
<td>Tension in the Active Zone</td>
<td>221</td>
</tr>
<tr>
<td>Inappropriate Forces in the Passive Zone</td>
<td>224</td>
</tr>
<tr>
<td>Other Details</td>
<td>228</td>
</tr>
<tr>
<td>Verification of Calculations</td>
<td>232</td>
</tr>
<tr>
<td>Three-Dimensional Effects</td>
<td>233</td>
</tr>
<tr>
<td>CHAPTER 15 PRESENTING RESULTS OF STABILITY EVALUATIONS</td>
<td>237</td>
</tr>
<tr>
<td>Site Characterization and Representation</td>
<td>237</td>
</tr>
<tr>
<td>Soil Property Evaluation</td>
<td>238</td>
</tr>
<tr>
<td>Pore Water Pressures</td>
<td>238</td>
</tr>
<tr>
<td>Special Features</td>
<td>238</td>
</tr>
<tr>
<td>Calculation Procedure</td>
<td>239</td>
</tr>
<tr>
<td>Analysis Summary Figure</td>
<td>239</td>
</tr>
<tr>
<td>Parametric Studies</td>
<td>241</td>
</tr>
<tr>
<td>Detailed Input Data</td>
<td>243</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>243</td>
</tr>
<tr>
<td>CHAPTER 16 SLOPE STABILIZATION AND REPAIR</td>
<td>247</td>
</tr>
<tr>
<td>Use of Back-Analysis</td>
<td>247</td>
</tr>
<tr>
<td>Factors Governing Selection of Method of Stabilization</td>
<td>247</td>
</tr>
</tbody>
</table>
Drainage 248
Excavations and Buttress Fills 253
Retaining Structures 254
Reinforcing Piles and Drilled Shafts 256
Injection Methods 260
Vegetation 261
Thermal Treatment 261
Bridging 262
Removal and Replacement of the Sliding Mass 263

APPENDIX

SLOPE STABILITY CHARTS 265

Use and Applicability of Charts for Analysis of Slope Stability 265
Averaging Slope Inclinations, Unit Weights, and Shear Strengths 265
Soils with $\phi = 0$ 266
Soils with $\phi > 0$ 270
Infinite Slope Charts 272
Soils with $\phi = 0$ and Strength Increasing with Depth 274
Examples 274
References 281
Index 295