Chapter 10
Performance of Centrifugal Pumps 10.1
PAUL COOPER AND GEORGE TCHOBANOGLOUS

10-1 Classification of Centrifugal Pumps 10.1
10-2 Pump Application Terminology, Equations, and Performance Curves 10.1
10-3 Pump Operating Characteristics 10.8
10-4 Cavitation 10.16
10-5 Pump Characteristic Curves 10.27
10-6 Pump Operating Regions 10.30
10-7 Elementary Pump System Analysis 10.32
10-8 Practical Pumping System H-Q Curve Analysis 10.37
10-9 Complex Pumping System H-Q Curves 10.43
10-10 References 10.43

Chapter 11
Types of Pumps 11.1
RICHARD O. GARBUS

11-1 General Classifications of Pumps 11.1
11-2 Classification of Centrifugal Pumps 11.6
11-3 Construction of Centrifugal Pumps 11.7
11-4 Overhung-Impeller Pumps 11.17
11-5 Impeller-between-Bearings Pumps 11.25
11-6 Classification of Vertical Pumps 11.25
11-7 Construction of Vertical Pumps 11.27
11-8 Types of Vertical Pumps 11.31
11-9 Positive-Displacement Pumps 11.33
11-10 Special Pumps 11.35
11-11 Summary of Typical Pump Applications 11.40
11-12 References 11.41
11-13 Supplementary Reading 11.41

Chapter 12
Pumps: Intake Design, Selection, and Installation 12.1
GARR M. JONES AND ROBERT L. SANKS

12-1 Design of Pump Intakes 12.2
12-2 Pump Intake Design Standards 12.2
12-3 Types of Pump Intake Basins 12.4
12-4 Model Study 12.11
12-5 Evolution of Trench-Type Wet Wells 12.12
12-6 Summary of Trench-Type Wet Well Characteristics 12.26
12-7 Trench-Type Wet Well Design 12.28
12-8 Wet Wells in Small Lift Stations 12.44
12-9 Principles of Pump Selection 12.47
12-10 Step-by-Step Pump Selection and Installation Procedure 12.54
12-11 Reducing Cost of Ownership 12.59
12-12 Installation Design 12.61
12-13 References 12.81

Chapter 13
Electric Motors 13.1
PAUL C. LEACH AND ALAN VAUSE

13-1 General 13.1
13-2 Applications of Motors 13.3
13-3 Fundamentals 13.6
13-4 Types of Motors for Pump Drivers 13.9
13-5 Characteristics of Squirrel-Cage Induction Motors 13.12
13-6 Motor Speed 13.12
13-7 Motor Voltage 13.13
13-8 Enclosures 13.14
13-9 Insulation 13.15
13-10 Squirrel-Cage Motors 13.16
13-11 Frequency of Motor Starts 13.20
13-12 Miscellaneous Motor Features 13.21
13-13 Specifying Pumping Unit Drivers 13.23
13-14 Definite Purpose Induction Motors 13.24
13-15 Design Checklist 13.28
13-16 References 13.29

Chapter 14
Engines 14.1
GARR M. JONES AND JAMES W. SCHETTLER

14-1 Selecting an Engine Drive 14.1
14-2 Duty Cycle 14.2
14-3 Fuel for Engines 14.4
Chapter 15
Variable-Speed Pumping 15.1

MAYO GOTTLEBSON, ROBERT L. SANKS, AND ALAN VAUSE

15-1 Variable Speed versus Constant Speed 15.1
15-2 Design Considerations 15.4
15-3 Theory of Variable-Speed Pumping 15.4
15-4 Pump Selection 15.9
15-5 Variable- and Constant-Speed Pumps in Simultaneous Operation 15.12
15-6 Special Design Considerations 15.13
15-7 Analysis of Variable-Speed Booster Pumping 15.15
15-8 Minimum Flow Rate 15.19
15-9 Operations in Booster Pumping 15.22
15-10 Simultaneous Operation of V/S and C/S Booster Pumps 15.24
15-11 Adjustable- and Variable-Speed Drives 15.25
15-12 References 15.41

Chapter 16
Pump-Driver Specifications 16.1

DAVID L. EISENHAUER, THOMAS M. FLEGAL, AND CARR M. JONES

16-1 Comparison of Two Approaches to Writing Specifications 16.1
16-2 Methods for Specifying Quality of Equipment 16.2
16-3 Nonrestrictive Specifications 16.2
16-4 Operating Conditions 16.4
16-5 Mass Elastic Systems and Critical Speeds 16.4
16-6 Pump Testing 16.4
16-7 Shipping Major Pumping Units 16.8
16-8 Submittals 16.8
16-9 Product Data 16.9
16-10 Seals 16.9
16-11 Pump Shafts 16.9
16-12 Pump Shaft Bearings 16.9
16-13 Vertical Drive Shafts 16.9
16-14 Electric Motors 16.9
16-15 Optimum Efficiency 16.10
16-16 References 16.10

Chapter 17
System Design for Wastewater Pumping 17.1

CARR M. JONES

17-1 Organization and Control of the Process 17.1
17-2 Preliminary Engineering 17.2
17-3 Detailed Layout 17.6
17-4 Detailed Design 17.10
17-5 Examples of Large Lift Stations 17.11
17-6 Examples of Medium-Size Lift Stations 17.18
17-7 Examples of Small Lift Stations 17.25
17-8 References 17.34

Chapter 18
System Design for Water Pumping 18.1

BAYARD E. BOSSERMAN II, RICHARD J. RINGWOOD, MARVIN DAN SCHMIDT, AND MICHAEL G. THALHAMER

18-1 Types of Water Pumping Stations 18.1
18-2 Pumping Station Flow and Pressure Requirements 18.1
18-3 Raw Water Pumping from Rivers and Lakes 18.5
18-4 Raw Water Pumping from Aqueducts 18.16
18-5 Well Pumps with Elevated Tanks 18.24
18-6 Booster Pumping Stations 18.33
Chapter 24
Designing for Easy Operation and Low Maintenance 24.1
BAYARD E. BOSSERMAN II, GEORGE JORGENSEN, GARY ISAAC, AND ROBERT L. SANKS
24-1 Site Selection 24.1
24-2 Landscaping 24.2
24-3 Hydraulics 24.2
24-4 Mechanical Considerations 24.6
24-5 Smooth-Running and Reliable Pumps 24.8
24-6 Electrical Considerations 24.11
24-7 Architectural Considerations 24.13
24-8 Standby Facilities 24.13
24-9 Specifications 24.14
24-10 Operators’ Preferences 24.14
24-11 Survey of Two Thousand Wastewater Pumping Stations 24.24
24-12 Auxiliary Support Systems in Raw Wastewater Pumping Stations 24.32
24-13 References 24.33

Chapter 25
Summary of Design Considerations 25.1
GARR M. JONES, ROBERT A. (RANDY) NIXON, RANDALL R. PARKS, AND ROBERT L. SANKS
25-1 Need for Pumping Stations 25.2
25-2 Site Selection 25.3
25-3 Architectural and Environmental Considerations 25.5
25-4 Future Expansion 25.10
25-5 Hydraulic Constraints 25.11
25-6 Types of Pumping Stations 25.12
25-7 Power, Drivers, and Standby 25.26
25-8 Application-Engineered Equipment 25.30
25-9 Station Auxiliaries 25.31
25-10 Instruments and Control 25.34
25-11 Structural Design 25.35
25-12 Concrete Protection: Coatings and Linings 25.44
25-13 Corrosion of Metals 25.46
25-14 Force Main Design 25.51
25-15 References 25.52

Chapter 26
Pumping Station Design Examples 26.1
GARR M. JONES, GARY S. DODSON, AND THEODORE B. WHITTON
26-1 Redesigned Clyde Wastewater Pumping Station 26.1
26-2 Redesigned Kirkland Wastewater Pumping Station 26.6
26-3 Jameson Canyon Raw Water Pumping Station 26.15
26-4 References 26.17

Chapter 27
Avoiding Blunders 27.1
ROBERT L. SANKS
27-1 General 27.1
27-2 Site 27.2
27-3 Environmental 27.2
27-4 Safety 27.2
27-5 Hydraulics 27.3
27-6 Wet Wells 27.5
27-7 Pumps 27.10
27-8 Valves 27.13
27-9 Mechanical 27.15
27-10 Electrical 27.16
27-11 Structural-Architectural 27.16
27-12 Specifications 27.17
27-13 Economics 27.18
27-14 The Future and Remodeling 27.18
27-15 Find the Blunders 27.18
27-16 Design Reviews 27.18
27-17 Operations 27.20
27-18 References 27.20

Chapter 28
Contract Documents 28.1
JOHN E. CONNELL AND THOMAS M. FLEGAL
28-1 General 28.1
28-2 Bidding and Contracting Requirements 28.3
28-3 Technical Specifications 28.4
28-4 Source Material 28.6
28-5 Methods of Specifying 28.7
28-6 Submittal Requirements 28.8
28-7 References 28.9
Appendix E
Checklist for Project Reviews E.1
LEROY R. TAYLOR

E-1 Civil Design Checklist E.1
E-2 Structural/Geotechnical/Architectural Design Checklist E.2
E-3 Electrical Design Checklist E.2
E-4 Instrumentation and Control Checklist E.3
E-5 Cross-Connection Control E.3
E-6 Mechanical Design Checklist E.4
E-7 References E.6

Appendix F
Start-Up F.1
ERIK B. FISKE, GEORGE FRYE, LOWELL G. SLOAN, AND SAM V. SUGUSSAAR

F-1 Pre-Visit Check F.2
F-2 Pre-Start-Up Check F.2
F-3 Electrical Systems F.4
F-4 Simplified Operational Checks for Small Stations F.9
F-5 Well Pumps F.9

F-6 Chlorination F.11
F-7 Complex Drives F.12
F-8 Control Panel and Electrical Systems F.12
F-9 Bubbler Systems F.12
F-10 Vacuum Priming Systems F.13
F-11 Compressed Air Systems F.14
F-12 Hydropneumatic Tank System F.15
F-13 Main Pumps, Final Pre-Start-Up Checks F.16
F-14 Wet Well and Testing of Main Pumps F.17
F-15 Cleaning Wet Wells F.17
F-16 References F.18

Appendix G
Suction Specific Speed G.1
GARR M. JONES

G-1 References 6.2

Index 1.1