Contents

Preface ... xiii

Chapter 1 An Introduction to Tunnel Engineering ... 1
Elwyn H. King and Thomas R. Kuesel
Tunnel elements 1
Details 2

Chapter 2 Tunnel Layout .. 4
Elwyn H. King and Thomas R. Kuesel
Clearances for highway tunnels 4
Alignment and grades for highway tunnels 4
Clearances for railroad tunnels 5
Alignment and grades for railroad tunnels 5
Clearances for rapid transit tunnels 6
Alignment and grades for rapid transit tunnels 6
Controls on layout of underwater transportation tunnels 8

Chapter 3 Tunnel Surveys and Alignment Control .. 13
William S. Robinson
Current state of surveying technology 13
General surveying requirements and procedures 16
Tunnel geometry 23
Survey work during construction 25
Survey for construction of immersed tubes 34
Tunnel monitoring surveys 36
Representative projects 40

Chapter 4 Geotechnical Investigations .. 46
Harvey W. Parker
Geotechnical approach to tunnel design 46
Geotechnical challenges of the underground 47
Importance of geology 48
Phasing and timing 48
Teamwork, communications, and training 50
Soil classification for tunnels 51
Rock classification 54
Description of investigation techniques 59
Developing the investigation program 65
Tunnel monitoring and instrumentation 69
Guidelines for level of geotechnical effort 69
Geotechnical Reports 74

Chapter 5 Tunnel Stabilization and Lining ... 80
Thomas R. Kuesel
Classifications 80
Principles of ground-structure interaction 84
Design considerations 86
Lining behavior under ground loads 87
Performance criteria for flexible ring design 87
Behavior of two-stage linings 89
Lining analysis 90
Behavior of rock reinforcement systems 91
<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Soft Ground Tunneling</th>
<th>James E. Monsees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical investigations</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Anticipated ground behavior</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Soil stabilization and groundwater control</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Grouting</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Soft ground tunneling machines</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Selection of soft ground tunneling machine</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Soft ground tunnel support and lining</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Surface effects of tunnel construction</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Building protection methods</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Practicalities of tunnel engineering</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Seismic design of soft ground tunnels</td>
<td>118</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Rock Tunnels</th>
<th>Elwyn H. King</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical concept</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Changing concepts</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Rock discontinuities</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Rock movement</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Formation grouting</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Rock reinforcement</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Current concepts</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Rock mass rating (rnr)</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Excavation methods</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Effect of excavation method on design</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Seismic effects</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Use of explosives</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Cast-in-place linings</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Caverns</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>151</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Tunneling in Difficult Ground</th>
<th>Terrence G. McCusker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instability</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>Heavy loading</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Drill-and-blast tunneling</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>TBM tunneling</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>Swelling</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>Obstacles and constraints</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>Physical conditions</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Shafts</th>
<th>Robert J. Jenny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft excavation in soft ground</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>Excavation in soft, wet ground</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Shaft excavation in rock</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Lining of shafts</td>
<td>185</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Deep Shafts</th>
<th>Maurice Grieses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shafts for tunnels and caverns</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Alternatives to conventional drill-and-blast methods</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Construction sequence</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Conventional sinking equipment</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>The shaft sinking cycle</td>
<td>193</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 11 Tunnel Boring Machines

Harry Surcliffe

- Historical development 203
- Excavation under external water pressure 205
- Components of a modern TBM 205
- Operation of the TBM 207
- The TBM, temporary support, and permanent lining 209
- The decision to use a TBM 209
- Selecting a soft ground TBM 210
- Measuring TBM performance 210
- The learning curve 212
- Variability in ground 213
- Noncircular tunnels 214

Chapter 12 Shotcrete

Elwyn H. King

- History 220
- Quality assurance 223
- Materials 223
- Engineering properties 225
- Wet or dry? 226
- Preparation, mix, shoot, and cure 227
- Testing 228
- Design considerations 229

Chapter 13 Materials Handling and Construction Plant

A. A. Mathews

- Basic transportation systems 231
- Special muck transporting systems 239
- Supplemental material handling systems 244
- Vertical transport 248
- Hoisting 252
- Vertical conveyors 254
- Utilities 255
- Surface plant 262
- Concrete plant 264
- Shotcrete plant 266

Chapter 14 Immersed Tube Tunnels

Ahmet Gursoy

- General description 268
- Conceptual considerations 269
- Steel shell tubes 273
- Concrete tubes 279
- Weight control of tubes 280
- Preparation of trench 281
- Tube foundations 282
- Joints between tubes 285
- Backfill 289
- Design of tubes 289

Chapter 15 Water Conveyance Tunnels

David E. Westfall

- Friction losses 298
- Drop shafts for vertical conveyance 298
- Air removal 302
- Gas buildups in sewer tunnels 304
Contents

Control of infiltration and exfiltration 304
Lake taps and connections to live tunnels 308
Tunnel maintenance 309

Chapter 16 Small-Diameter Tunnels ... 311
David E. Westfall and Glenn M. Boyce
Basic procedure 311
Site investigations 311
Pits and shafts 313
Leading edge 314
Jackings pipes 316
Applications 318

Chapter 17 Cut-and-Cover Tunnel Structures 320
James L. Wilton
Tunnel design—structural 322
Shoring systems 329
Common types of shoring walls 329
Common types of shoring wall support 332
Design of shoring systems 335
Performance of shoring systems 346
Decking 348
Excavation and groundwater control 349
Permanent shoring walls and support 352
Reinforced concrete materials and construction 353
Watertightness 357

Chapter 18 Safety Provisions .. 360
Robert J. Jenny
General safety rules 360
Localized operational hazards 361
First aid station 362
Fire hazards 363
Ventilation during construction 363
Handling and storage of explosives 364
Inactive headings 364
Compressed-air work 364
Decompression table explanation 367

Chapter 19 Fire Life Safety ... 369
Norman H. Danziger
Background 369
BART 369
Highway tunnels 372
Rapid transit tunnels 378
Mainline railroad tunnels 381
Fire suppression systems 382
Sprinkler systems 382

Chapter 20 Tunnel Ventilation ... 384
Arthur G. Bendelius
Highway tunnels 384
Railroad tunnels 406
Rapid transit systems 414
Simulation 421
Test program 422
Equipment and facilities 424
Control and monitoring systems 435
Ventilation during construction 436
Chapter 21 Tunnel Lighting ... 439
Peter A. Mowczan
Lighting of highway tunnels 439
Definition of terms 439
Tunnel lighting nomenclature 440
Tunnel classification 441
Physiological considerations in tunnel lighting design 441
Entrance lighting 443
Luminance level in the tunnel interior 444
Exit lighting 445
Lighting of short tunnels 445
Lighting of long tunnels 446
Tunnel lining 451
Tunnel lighting luminaires 451
Maintenance 452
Emergency lighting 453
Lighting of transit tunnels 453
Lighting of railway tunnels 453
Design computations 454

Chapter 22 Power Supply and Distribution 455
Elies Elvoe
Peculiar electrical requirements of tunnels 455
Types of tunnels 456
Electrical loads 456
Lighting load 456
Power load 457
Tunnel ventilation fan load 457
Miscellaneous loads 457
Voltage selection 457
Distribution voltage 458
Primary distribution systems 458
Service bus arrangements 459
Secondary distribution system 460
Standby power supply 460
Uninterruptible power systems (UPS) 461
Standby power distribution system 461
Supervisory control and data acquisition (SCADA) 461
Data transmission system (DTS) 462
Auxiliary systems 462
Grounding and bonding 462
System grounding 462
Equipment grounding 462
Grounding electrodes 463
Stray current and cathodic protection 463
Raceway systems 463
Design 463
Materials 463
Major equipment 464

Chapter 23 Water Supply and Drainage Systems 467
Arthur G. Bendelius
Water supply system 467
Water supply design criteria 467
Water source 467
Water mains 468
Hose stations 470
Protection of exhaust fans 470
Fire pumps 471
Drainage system 473
Drainage design criteria 474
Open approach drainage 475
Tunnel drainage 476
Drainage pump stations 476
Drainage pumps 477
Water treatment 480
Flood protection 481
Drainage of rail tunnels 482

Chapter 24 Surveillance and Control Systems for Highway Tunnels 485
Richard J. Naish
Survey and control systems 485
Overview of available technology 485
Traffic control concepts 487
Field hardware 490
Control center 493
System selection 496
Design and implementation 496
Operation and maintenance 497

Chapter 25 Tunnel Finish .. 499
Stanley Lorch
Suspended ceiling systems 500
Ceiling veneers 504
Tunnel sidewall finishes 505
Sidewalks 506
Equipment niches and doors 508
Roadway design 508
Tunnel finish materials 508

Chapter 26 Service Buildings and Ancillary Spaces ... 512
Stanley Lorch and Hanan Rivett
Ventilation buildings for ducted tunnels 512
Program requirements 514
Underground rail transit stations 517

Chapter 27 Tunnel Rehabilitation .. 520
Henry A. Russell
Tunnel rehabilitation inspection methods 520
Tunnel rehabilitation repairs 528
Concrete repair 528
Crack repair 534
Metal repairs 536
Brick masonry repair 537
Segmental tunnel liners 537
Construction costs 538

Chapter 28 Tunnel Construction Contracting ... 541
Thomas R. Kuesel
Differing site conditions clause 542