Bifurcation Analysis in Geomechanics

I. VARDOULAKIS
Department of Engineering Science
National Technical University of Athens
Greece

and

J. SULEM
Centre d'Enseignement et de Recherche en Mécanique des Sols
Ecole Nationale des Ponts et Chaussées/LCPC
France
Contents

1 Introduction

1.1 A historical note
1.2 Observational background
1.3 The frame of geomaterials constitutive modeling
1.4 Considered topics
Literature

2 Basic concepts from continuum mechanics

2.1 Kinematic and static considerations
2.1.1 Lagrangian description of the deformation
2.1.2 Eulerian description of the deformation
2.1.3 Deformation of surface and volume elements
2.1.4 Static considerations
2.2 Time derivatives and rates
2.2.1 Material time derivative and velocity
2.2.2 Relative deformation gradient and its rate
2.2.3 Rigid-body or Jaumann derivative
2.2.4 Convective time derivative
2.2.5 Material derivative of volume integrals
2.3 Balance equations
2.3.1 Mass balance
2.3.2 Balance of linear momentum
2.3.3 Balance of angular momentum
2.3.4 Energy balance
2.3.5 Entropy inequalities and balance
2.4 Discontinuous fields and wave fronts
2.4.1 Geometric compatibility conditions
2.4.2 Kinematic compatibility conditions
2.4.3 Dynamic compatibility conditions
2.4.4 Weak discontinuities
Literature

3 Incremental continuum mechanics

3.1 Updated Lagrangian description
3.1.1 Kinematical considerations
3.1.2 Plane-strain deformations
3.1.3 Deformation of line, surface and volume elements
3.1.4 Stresses and stress increments
3.2 Infinitesimal strain superimposed upon finite strain
3.2.1 Plane rectilinear deformations
3.2.2 Superposition of rectilinear deformations
3.2.3 Superposition of pure shear
3.2.4 Hypoelastic constitutive equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 A historical note</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Observational background</td>
<td>3</td>
</tr>
<tr>
<td>1.3 The frame of geomaterials constitutive modeling</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Considered topics</td>
<td>11</td>
</tr>
<tr>
<td>Literature</td>
<td>12</td>
</tr>
<tr>
<td>2 Basic concepts from continuum mechanics</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Kinematic and static considerations</td>
<td>14</td>
</tr>
<tr>
<td>2.1.1 Lagrangian description of the deformation</td>
<td>14</td>
</tr>
<tr>
<td>2.1.2 Eulerian description of the deformation</td>
<td>17</td>
</tr>
<tr>
<td>2.1.3 Deformation of surface and volume elements</td>
<td>19</td>
</tr>
<tr>
<td>2.1.4 Static considerations</td>
<td>20</td>
</tr>
<tr>
<td>2.2 Time derivatives and rates</td>
<td>22</td>
</tr>
<tr>
<td>2.2.1 Material time derivative and velocity</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2 Relative deformation gradient and its rate</td>
<td>24</td>
</tr>
<tr>
<td>2.2.3 Rigid-body or Jaumann derivative</td>
<td>26</td>
</tr>
<tr>
<td>2.2.4 Convective time derivative</td>
<td>27</td>
</tr>
<tr>
<td>2.2.5 Material derivative of volume integrals</td>
<td>29</td>
</tr>
<tr>
<td>2.3 Balance equations</td>
<td>31</td>
</tr>
<tr>
<td>2.3.1 Mass balance</td>
<td>31</td>
</tr>
<tr>
<td>2.3.2 Balance of linear momentum</td>
<td>32</td>
</tr>
<tr>
<td>2.3.3 Balance of angular momentum</td>
<td>33</td>
</tr>
<tr>
<td>2.3.4 Energy balance</td>
<td>35</td>
</tr>
<tr>
<td>2.3.5 Entropy inequalities and balance</td>
<td>37</td>
</tr>
<tr>
<td>2.4 Discontinuous fields and wave fronts</td>
<td>39</td>
</tr>
<tr>
<td>2.4.1 Geometric compatibility conditions</td>
<td>39</td>
</tr>
<tr>
<td>2.4.2 Kinematic compatibility conditions</td>
<td>41</td>
</tr>
<tr>
<td>2.4.3 Dynamic compatibility conditions</td>
<td>43</td>
</tr>
<tr>
<td>2.4.4 Weak discontinuities</td>
<td>46</td>
</tr>
<tr>
<td>Literature</td>
<td>47</td>
</tr>
<tr>
<td>3 Incremental continuum mechanics</td>
<td>51</td>
</tr>
<tr>
<td>3.1 Updated Lagrangian description</td>
<td>51</td>
</tr>
<tr>
<td>3.1.1 Kinematical considerations</td>
<td>51</td>
</tr>
<tr>
<td>3.1.2 Plane-strain deformations</td>
<td>52</td>
</tr>
<tr>
<td>3.1.3 Deformation of line, surface and volume elements</td>
<td>54</td>
</tr>
<tr>
<td>3.1.4 Stresses and stress increments</td>
<td>56</td>
</tr>
<tr>
<td>3.2 Infinitesimal strain superimposed upon finite strain</td>
<td>62</td>
</tr>
<tr>
<td>3.2.1 Plane rectilinear deformations</td>
<td>62</td>
</tr>
<tr>
<td>3.2.2 Superposition of rectilinear deformations</td>
<td>63</td>
</tr>
<tr>
<td>3.2.3 Superposition of pure shear</td>
<td>64</td>
</tr>
<tr>
<td>3.2.4 Hypoelastic constitutive equations</td>
<td>67</td>
</tr>
</tbody>
</table>
3.3 Equilibrium bifurcation
 3.3.1 The principle of virtual work
 3.3.2 The zero moment condition
 3.3.3 Configuration-dependent loading
 3.3.4 The linear bifurcation problem
 3.3.5 Uniqueness theorems under dead loading
3.4 Acceleration waves and stationary discontinuities

4 Buckling of layered elastic media
 4.1 Folding of elastic and viscoelastic media as a bifurcation problem
 4.2 Surface and interfacial instabilities in elastic media
 4.2.1 Buckling of a single layer under initial stress
 4.2.2 Buckling of a system of layers — the transfer matrix technique
 4.2.3 Surface instability of a homogeneous half-space
 4.2.4 The problem of wavelength selection
 4.2.5 Interfacial instability
 4.3 Periodic elastic multilayered media
 4.3.1 The asymptotic averaging method
 4.3.2 Example: Surface instabilities in a multilayered periodic half-space
 4.3.3 Limitations of the asymptotic averaging method
 4.4 Elastic anisotropic Cosserat continuum
 4.4.1 Basic concepts
 4.4.2 The Cosserat model of a multilayered medium
 4.4.3 Example: Buckling of an homogeneous Cosserat half-space
 4.5 The effect of surface parallel Griffith cracks
 4.5.1 Analytical solution for a single crack
 4.5.2 Buckling of a half-space with a periodic array of coplanar cracks
 4.5.3 A Cosserat continuum representation
 4.5.4 Influence of the initial stress field on crack propagation
 4.6 Concluding remarks and discussion

5 Mechanics of water-saturated granular materials
 5.1 Definitions
 5.2 Mass balance equations
 5.3 Static considerations: partial and 'effective' stresses
 5.4 The influence of grain and fluid compressibility
 5.5 Balance of linear momentum
 5.6 Laws governing fluid flow in porous media
 5.6.1 Darcy’s law
 5.6.2 Biot’s modification of viscous and inertial drag
 5.6.3 Forchheimer’s extension of Darcy’s law
 5.6.4 Brinkman’s and Aifantis’ modification of Darcy’s law
 5.7 The incremental initial, boundary value problem
 5.7.1 Governing equations
 5.7.2 The incremental problem
 5.7.3 Linear stability analysis
 5.8 Compaction instabilities
 5.8.1 Grain crushing
 5.8.2 Stability of non-uniform compaction

Literature
6 Plasticity theory for granular materials

6.1 Micromechanical considerations
 6.1.1 Kinematics
 6.1.2 Statics

6.2 Flow theory of plasticity
 6.2.1 The Mróz–Mandel non-associative elastoplasticity
 6.2.2 Stress-dependent elasticity
 6.2.3 Finite strain formulations
 6.2.4 The equation of thermoelastoplasticity
 6.2.5 Drucker's postulate
 6.2.6 Uniqueness theorems for elastoplastic solids

6.3 Simple constitutive models for frictional materials
 6.3.1 Stress invariants
 6.3.2 The Drucker–Prager and Mohr–Coulomb models
 6.3.3 Data reduction and model calibration
 6.3.4 Lade's yield surface model

6.4 Extensions of isotropic hardening plasticity
 6.4.1 Non-potential flow rules
 6.4.2 Yield surface modifications
 6.4.3 Modeling of strain softening

6.5 2D-constitutive model for sand
 6.5.1 Model justification
 6.5.2 Formulation
 6.5.3 Example of model calibration

Literature

7 Bifurcation analysis of element tests

7.1 Observational background

7.2 Bifurcation analysis of the triaxial compression and extension tests
 7.2.1 Problem statement
 7.2.2 A deformation theory of plasticity
 7.2.3 Governing equations
 7.2.4 Bifurcation condition
 7.2.5 Example of triaxial compression test on medium dense Karlsruhe sand

7.3 Bifurcation analysis of the biaxial test
 7.3.1 Formulation of the diffuse bifurcation problem
 7.3.2 Classification of regimes and bifurcation condition
 7.3.3 Example: Biaxial compression test on a Dutch sand

References

8 Shear-band bifurcation in granular media

8.1 Equilibrium bifurcation and stability
 8.1.1 The Thomas–Hill–Mandel shear-band model
 8.1.2 Mandel's dynamic stability analysis

8.2 Shear-band formation in element tests
 8.2.1 Shear-band analysis in plane strain rectilinear deformations
 8.2.2 Analysis of a biaxial compression test on sand
 8.2.3 Imperfection sensitivity of the biaxial test
 8.2.4 Spontaneous versus progressive localization

8.3 Shear banding in sands: experiment versus theory
 8.3.1 Influence of porosity
 8.3.2 Influence of confining pressure
 8.3.3 Influence of anisotropy
 8.3.4 Influence of grain size and shape
CONTENTS

8.4 Non-coaxial plasticity model 307
8.5 Localization in inhomogeneous stress field
8.5.1 The cavity inflation test 313
8.5.2 Global bifurcation analysis of the cavity inflation test 321
8.5.3 Progressive failure 325
Literature 330

9 Cosserat continuum model for granular materials 334

9.1 Micromechanical considerations
9.1.1 Motivation 334
9.1.2 Kinematical considerations 337
9.1.3 Static considerations 341
9.2 Basic concepts from Cosserat continuum mechanics
9.2.1 Kinematics of 2D Cosserat continuum 344
9.2.2 Dynamics and statics 346
9.2.3 Principles of virtual work 351
9.2.4 The boundary-layer effect 353
9.3 The Mühlenbach–Vardoulakis Cosserat plasticity model
9.3.1 Definitions 359
9.3.2 Elastic strains 360
9.3.3 Plastic strains 361
9.3.4 Constitutive equations 362
9.4 Prediction of the shear-band thickness 363
9.4.1 Governing equations 365
9.4.2 Shear-band solution 367
9.4.3 Analytical and experimental results 370
9.5 Discussion and numerical implications 373
Literature 379

10 Second-grade plasticity theory for geomaterials 382

10.1 Mindlin’s formalism of microstructure
10.1.1 Kinematics 382
10.1.2 The principle of virtual work 384
10.1.3 Example: Gradient elasticity theory with surface energy 386
10.2 Second-grade plasticity theory for granular rocks 390
10.2.1 Observational background 390
10.2.2 Constitutive modeling 394
10.2.3 Constitutive equations 399
10.2.4 Formulation of the rate-boundary value problem 402
10.2.5 Well-posedness of the rate-boundary value problem 406
10.3 Bifurcation analysis deep boreholes 410
10.3.1 Problem statement 410
10.3.2 Bifurcation analysis 411
10.3.3 The scale effect 413
10.4 A 2D-gradient model for granular media 416
10.4.1 Constitutive equations 416
10.4.2 Shear-band analysis 419
Literature 423

11 Stability of undrained deformations 426

11.1 Monotonic biaxial tests on water-saturated sand
11.1.1 Experimental basis 426
11.1.2 Simulation and discussion 432
11.2 Theoretical implications 438
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>11.3.1</td>
<td>Undrained shear banding</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>11.3.2</td>
<td>Linear stability analysis</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>11.3.3</td>
<td>Regularization</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>11.3.4</td>
<td>Globally undrained shear banding</td>
<td>451</td>
</tr>
<tr>
<td>11.4</td>
<td></td>
<td>Grain size and shape effect</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Literature</td>
<td>458</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>461</td>
</tr>
</tbody>
</table>