GEOTECHNICAL ENGINEERING OF EMBANKMENT DAMS

ROBIN FELL
Professor of Civil Engineering
School of Civil Engineering, University of New South Wales, Sydney

PATRICK MacGREGOR
Chief Engineering Geologist
Snowy Mountains Engineering Corporation, Sydney

DAVID STAPLEDON
Geotechnical Consultant & Professor of Applied Geology
University of South Australia, Adelaide

A.A. BALKEMA / ROTTERDAM / BROOKFIELD / 1992
Contents

PREFACE

1 EMBANKMENT DAMS, THEIR ZONING AND SELECTION
 1.1 Types of embankment dams, their advantages and limitations 1
 1.2 Zoning of embankment dams and typical construction materials 7
 1.3 Selection of embankment type 17

2 WEATHERING PROCESSES AND PROFILES IN VALLEYS
 2.1 High horizontal stresses in rock 23
 2.2 Weathering of rocks 33
 2.3 Chemical alteration 48
 2.4 Rapid weathering 49
 2.5 Classification of weathered rock 51
 2.6 Landsliding 55

3 GEOTECHNICAL QUESTIONS ASSOCIATED WITH VARIOUS GEOLOGICAL ENVIRONMENTS
 3.1 Granitic rocks 73
 3.2 Volcanic rocks (intrusive and flow) 75
 3.3 Pyroclastics 84
 3.4 Schistose rocks 88
 3.5 Mudrocks 96
 3.6 Sandstones and related sedimentary rocks 103
 3.7 Carbonate rocks 107
 3.8 Alluvial soils 126
 3.9 Colluvial soils 130
 3.10 Laterites and lateritic weathering profiles 134
 3.11 Glacial deposits and landforms 137

4 PLANNING, CONDUCTING AND REPORTING OF GEOTECHNICAL INVESTIGATIONS
 4.1 The need to ask the right questions 154
 4.2 Geotechnical input at various stages of project development 157
9.2 Control of erosion and ‘blowup’ or liquefaction of the foundation 320
9.3 Control of underseepage by cutoffs 325

10 STABILITY ANALYSIS 342
10.1 General principles 342
10.2 Estimation of pore pressure 343
10.3 Analysis of stability 356

11 FOUNDATION PREPARATION AND CLEANUP 359
11.1 General requirements 359
11.2 General foundation preparation 359
11.3 Cutoff foundation 361
11.4 Width and batter slopes for cutoff 368
11.5 Selection of cutoff foundation criteria 369
11.6 Slope modification and seam treatment 370

12 FOUNDATION GROUTING 377
12.1 General concepts of grouting dam foundations 377
12.2 Grouting design – Cement grout 378
12.3 Some practical aspects of grouting with cement 401
12.4 Chemical grouts in dam engineering 413

13 EMBANKMENT DETAILS 425
13.1 Freeboard 425
13.2 Embankment crest details 431
13.3 Embankment dimensioning and tolerances 433
13.4 Slope protection 435
13.5 Conduits through embankments 444
13.6 Interface between earthfill and concrete structures 447
13.7 Flood control structures 448
13.8 Design of dams for overtopping during construction 450

14 SPECIFICATION AND QUALITY CONTROL OF EARTHFILL AND ROCKFILL 457
14.1 Specification of rockfill 457
14.2 Specification of earthfill 461
14.3 Quality control 467
14.4 Testing of rockfill 472
14.5 Testing of earthfill 475

15 DESIGN OF DAMS TO WITHSTAND EARTHQUAKES 478
15.1 Effect of earthquake on embankment dams 478
15.2 Assessment of design earthquake 479
15.3 Liquefaction of dam embankments and foundations 488
15.4 Evaluation of liquefaction potential 496
15.5 Analysis of stability and deformations 503
15.6 Design for earthquake 513
16 CONCRETE FACE ROCKFILL DAMS
 16.1 General arrangement and reasons for selecting this type of dam
 16.2 Rockfill zones and their properties
 16.3 Concrete face
 16.4 Construction aspects
 16.5 Some non-standard design features

17 MINE AND INDUSTRIAL TAILINGS DAMS
 17.1 General
 17.2 Tailings and their properties
 17.3 Methods of tailings discharge and water recovery
 17.4 Prediction of tailings properties
 17.5 Methods of construction of tailings ‘dams’
 17.6 Seepage from tailings dams and its control

18 MONITORING AND SURVEILLANCE OF EMBANKMENT DAMS
 18.1 What is monitoring and surveillance?
 18.2 Why undertake monitoring and surveillance?
 18.3 What monitoring is required?
 18.4 How is the monitoring done?
 18.5 How often should monitoring be carried out?

REFERENCES

SUBJECT INDEX