An Introduction to

THE MECHANICS OF SOILS
AND FOUNDATIONS

Through Critical State Soil Mechanics

John Atkinson

Professor of Soil Mechanics
City University, London
CONTENTS

PREFACE xi

A NOTE ON UNITS xiv

GREEK ALPHABET xv

GLOSSARY OF SYMBOLS xvi

CHAPTER 1 INTRODUCTION TO GEOTECHNICAL ENGINEERING 1
 1.1 What is geotechnical engineering? 1
 1.2 Principles of engineering 3
 1.3 Fundamentals of mechanics 3
 1.4 Material behaviour 4
 1.5 Basic characteristics of soils 6
 1.6 Basic forms of geotechnical structure 7
 1.7 Factors of safety and load factors 8
 1.8 Summary 9

CHAPTER 2 BASIC MECHANICS 10
 2.1 Introduction 10
 2.2 Stresses and strains 10
 2.3 Plane strain and axial symmetry 12
 2.4 Rigid body mechanics 12
 2.5 Analysis of stress 14
 2.6 Analysis of strain 15
 2.7 Stress ratio and dilation 16
 2.8 Slip surfaces 18
 2.9 Summary 19

CHAPTER 3 ESSENTIALS OF MATERIAL BEHAVIOUR 22
 3.1 Stress–strain behaviour, stiffness and strength 22
 3.2 Choice of parameters for stress and strain 23
 3.3 Constitutive equations 25
CONTENTS

3.4 Strength
3.5 Elasticity
3.6 Perfect plasticity
3.7 Combined elasto–plastic behaviour
3.8 Time and rate effects
3.9 Summary

CHAPTER 4 THE STRUCTURE OF THE EARTH
4.1 Introduction
4.2 The Earth’s crust
4.3 Geological processes
4.4 Stratigraphy and the age of soils and rocks
4.5 Depositional environments
4.6 Recent geological events
4.7 Importance of geology in geotechnical engineering

CHAPTER 5 CLASSIFICATION OF SOILS
5.1 Description and classification
5.2 Description of soils
5.3 Soil particle sizes, shapes and gradings
5.4 Properties of fine-grained soils
5.5 Specific volume, water content and unit weight
5.6 Limits of consistency
5.7 Current state
5.8 Origins of soils
5.9 Simple practical exercises
5.10 Summary

CHAPTER 6 PORE PRESSURE, EFFECTIVE STRESS AND DRAINAGE
6.1 Introduction
6.2 Stress in the ground
6.3 Groundwater and pore pressure
6.4 Effective stress
6.5 Importance of effective stress
6.6 Demonstrations of effective stress
6.7 Volume change and drainage
6.8 Drained loading, undrained loading and consolidation
6.9 Rates of loading and drainage
6.10 Summary

CHAPTER 7 LABORATORY TESTING OF SOILS
7.1 Purposes of laboratory tests
7.2 Standard tests and specifications
7.3 Basic classification tests
7.4 Measurement of coefficient of permeability
7.5 Principal features of soil loading tests
7.6 One-dimensional compression and consolidation (oedometer) tests
7.7 Shear tests
7.8 Conventional triaxial compression tests
7.9 Hydraulic triaxial cells—stress path tests
12.3 State boundary surface for ordinary Cam clay 152
12.4 Calculation of plastic strains 153
12.5 Yielding and hardening 154
12.6 Complete constitutive equations for ordinary Cam clay 155
12.7 Applications of Cam clay in design 156
12.8 Summary 156

CHAPTER 13 STIFFNESS OF SOIL 158
13.1 Introduction 158
13.2 Cam clay and soil stiffness 158
13.3 Stiffness–strain relationships for soil 159
13.4 Strains in the ground 162
13.5 Measurement of soil stiffness in laboratory tests 162
13.6 Stiffness of soil at small and very small strains 164
13.7 Numerical modelling of soil stiffness 166
13.8 Summary 166

CHAPTER 14 CONSOLIDATION 168
14.1 Basic mechanism of consolidation 168
14.2 Theory for one-dimensional consolidation 168
14.3 Isochrones 170
14.4 Properties of isochrones 171
14.5 Solution for one-dimensional consolidation by parabolic isochrones 173
14.6 Other consolidation solutions 176
14.7 Determination of \(c_v \) from oedometer tests 176
14.8 Continuous loading and consolidation 178
14.9 Summary 179

CHAPTER 15 AGEING AND STRUCTURE IN NATURAL SOILS 183
15.1 Characteristics of natural soils 183
15.2 Formation of natural soils: one-dimensional compression and swelling 184
15.3 Ageing 186
15.4 Vibration and compaction 186
15.5 Creep 187
15.6 Cementing 187
15.7 Weathering 188
15.8 Changes in pore water salinity 189
15.9 Summary 189

CHAPTER 16 GROUND INVESTIGATIONS 190
16.1 Introduction 190
16.2 Objectives of ground investigations 190
16.3 Planning and doing investigations 192
16.4 Test pitting, drilling and sampling 193
16.5 In situ testing 194
16.6 States of soils in the ground 197
16.7 Investigating groundwater and permeability 198
CHAPTER 17 STEADY STATE SEEPAGE

17.1 Groundwater conditions
17.2 Practical problems of groundwater flow
17.3 Essentials of steady state seepage
17.4 Flow through a simple flownet
17.5 Flownet for two-dimensional seepage
17.6 Piping and erosion
17.7 Seepage through anisotropic soils

CHAPTER 18 STABILITY OF SOIL STRUCTURES USING BOUND METHODS

18.1 Introduction
18.2 Theorems of plastic collapse
18.3 Compatible mechanisms of slip surfaces
18.4 Work done by internal stresses and external loads
18.5 Simple upper bounds for a foundation
18.6 Discontinuous equilibrium stress states
18.7 Simple lower bounds for a foundation
18.8 Upper and lower bound solutions using fans
18.9 Bound solutions for the bearing capacity of a foundation using fans

CHAPTER 19 LIMIT EQUILIBRIUM METHOD

19.1 Theory of the limit equilibrium method
19.2 Simple limit equilibrium solutions
19.3 Coulomb wedge analyses
19.4 Simple slip circle analysis for undrained loading
19.5 Slip circle method for drained loading—the method of slices
19.6 Other limit equilibrium methods
19.7 Limit equilibrium solutions

CHAPTER 20 STABILITY OF SLOPES

20.1 Introduction
20.2 Types of instability
20.3 Stress changes in slopes
20.4 Influence of water on stability of slopes
20.5 Choice of strength parameters and factor of safety
20.6 Stability of infinite slopes
20.7 Stability of vertical cuts
20.8 Routine slope stability analyses
20.9 Behaviour of simple excavations

CHAPTER 21 EARTH PRESSURES AND STABILITY OF RETAINING WALLS

21.1 Introduction
21.2 Types of retaining structure 276
21.3 Failure of retaining walls 277
21.4 Stress changes in soil near retaining walls 278
21.5 Influence of water on retaining walls 279
21.6 Calculation of earth pressures—drained loading 281
21.7 Calculation of earth pressures—undrained loading 282
21.8 Overall stability 283
21.9 Choices of soil strength and factor of safety 286
21.10 Summary 287

CHAPTER 22 BEARING CAPACITY AND SETTLEMENT OF SHALLOW FOUNDATIONS 292
22.1 Types of foundations 292
22.2 Foundation behaviour 293
22.3 Stress changes in foundations 295
22.4 Bearing capacity of shallow foundations 296
22.5 Choice of soil strength and load factor for foundations 297
22.6 Foundations on sand 299
22.7 Foundations on elastic soil 299
22.8 Settlements for one-dimensional loading 302
22.9 Summary 304

CHAPTER 23 PILED FOUNDATIONS 309
23.1 Types of piled foundations 309
23.2 Base resistance of single piles 310
23.3 Shaft friction on piles 311
23.4 Pile testing and driving formulae 312
23.5 Capacity of pile groups 313
23.6 Summary 313

CHAPTER 24 GEOTECHNICAL CENTRIFUGE MODELLING 316
24.1 Modelling in engineering 316
24.2 Scaling laws and dimensional analysis 316
24.3 Scaling geotechnical models 317
24.4 Purposes of modelling 319
24.5 Geotechnical centrifuges 320
24.6 Control and instrumentation in centrifuge models 322
24.7 Summary 322

CHAPTER 25 CONCLUDING REMARKS 324

AUTHOR INDEX 326

SUBJECT INDEX 328