Underpinning and Retention

Edited by

S. THORBURN, OBE
Director
Thorburn Limited
Visiting Professor
University of Strathclyde

and

G.S. LITTLEJOHN
Professor of Civil Engineering
University of Bradford

BLACKIE ACADEMIC & PROFESSIONAL
An Imprint of Chapman & Hall
London · Glasgow · New York · Tokyo · Melbourne · Madras
Contents

Preface v
Contributors vii

1 Introduction
S. THORBURN 1

1.1 General description 1
 1.1.1 Conversion works 11
 1.1.2 Protection works 13
 1.1.3 Remedial works 18
1.2 Investigatory works 22
1.3 Serviceability limits 29
1.4 Litigation 32
1.5 Historical background 36

References and further reading 40

2 Traditional methods of support
J.F. HUTCHISON 41

2.1 Introduction 41
2.2 Shoring 42
 2.2.1 Raking shores 43
 2.2.2 Flying shores 45
 2.2.3 Needles and dead shores 47
2.3 Simple underpinning 48
2.4 Case study 55

Acknowledgement 60

References 60

3 Conventional piles in underpinning
K.W. COLE 61

3.1 Connecting piles to the structure 62
3.2 Conventional piles 64
3.3 Designing piles 66
 3.3.1 Assessment of ground and groundwater conditions 68
 3.3.2 Quality and costs of investigations 69
 3.3.3 Interpretation of ground and groundwater conditions 69
 3.3.4 Examples of adverse ground and groundwater conditions 70
 3.3.5 Estimation of pile bearing capacity 72
 3.3.6 Piles in particular soil and rock types 77
 3.3.7 Piles in cohesive soils 78
 3.3.8 Piles in granular soils 81
 3.3.9 Piles in weak rocks 82
 3.3.10 Piles founded on strong rocks 83

References ix
4 ‘Pali radice’ structures

F. LIZZI

4.1 Underpinning by means of conventional piles 84
4.2 Underpinning by means of pushed-into-the-ground piles 84
4.3 ‘Pali radice’ 84
 4.3.1 The technology of a pali radice 86
 4.3.2 The performance of pali radice 87
 4.3.3 The service load of a pali radice 88
 4.3.4 The ‘safety factor’ of a pali radice underpinning 89
 4.3.5 The design of a pali radice underpinning: the ultimate load of a pali radice 89
4.4 Case histories of underpinning 90
 4.4.1 Venice (Italy): Tre Archi Bridge (XVII century) 93
 4.4.2 Eure (France): monumental church of Tourny (XV century) 93
 4.4.3 Ghent (Belgium): ‘Het Toreken’ building (XV century) 93
 4.4.4 Derby (UK): St. Mary’s Bridge 96
 4.4.5 Trapani (Italy): Pepoli Museum (XIV century) 96
 4.4.6 Florence (Italy): the underpinning of the Ponte Vecchio 96
4.5 Reticulated pali radice (RPR) 97
 4.5.1 Reticulated pali radice structures 99
 4.5.2 The strengthening of the ground in urban areas 100
 4.5.3 The problem of landslides 104
 4.5.4 The reticulated pali radice structure as a reinforced soil basement 107
 4.5.5 Reticulated pali radice for consolidation of damaged tunnels 110
4.6 The advantages of a reticulated pali radice structure 110
 4.6.1 Model tests on reticulated pali radice 113
 4.6.2 Full-scale tests carried out on reticulated pali radice 116
 4.6.3 The reticulated pali radice structure from the physical point of view 116
 4.6.4 The design of a reticulated pali radice structure 119
 4.6.5 The design of a reticulated pali radice structure—conclusions 124
4.7 The problem of stability of a tower 126
 4.7.1 The Burano Bell Tower, Venice, Italy (XVI century) 126
 4.7.2 The strengthening of the Al-Hadba Minaret, Mosul, Iraq (XII century) 129
 4.7.3 The Tower of Pisa 130
4.8 Special case histories 138
 4.8.1 Adding new storeys to an existing building in Naples 138
 4.8.2 The consolidation of an old monument in Sicily, in a landslide zone 138
 4.8.3 The underpinning of an old bridge in Spain 141
 4.8.4 Another case of underpinning and RPR retaining wall—the Milan Underground 142
 4.8.5 Stabilization and partial straightening of leaning edifices by means of pali radice 143
 4.8.6 A case of foundation settlement owing to traffic—Bootham Bar, York, U.K. 148
 4.8.7 Integration of an inadequate foundation in a difficult soil—the bridge on the River Ardas (Greece) 148
4.9 The development of micropiles 148
4.10 Steel pipe micropiles, cemented into the soil 149
4.11 The preloading on micropiles 151
4.12 Micropiles for new foundations in difficult soils 151
Bibliography 156

5 The Pynford underpinning method

J.F.S. PRYKE

5.1 Introduction 157
5.2 Design 159
6 The Bullivant systems

H. BRADBURY

6.1 Introduction
6.2 Historical background
6.3 Definition of problems
6.4 Underpinning systems
6.4.1 Angle piles
6.4.2 Jack-down piles
6.4.3 Pile and reinforced concrete raft
6.4.4 Cantilever pile and beam
6.4.5 Cantilever ring beam
6.4.6 Conventional pad and beam
6.4.7 Pile and needle beam
6.4.8 Dual angle piles
6.4.9 Micro- or minipiles
6.4.10 Pressure grouting
6.5 Case studies
6.5.1 Tower 4, York City Walls
6.5.2 West Princes Street, Glasgow
6.5.3 Castle Bytham
6.5.4 The Town Mill, Guildford
6.5.5 Courthouse in Eire
6.5.6 Alaston, Derby
6.5.7 Minster, Sheppey
6.5.8 Merridale, Wolverhampton
6.5.9 Factory ground-floor slab failure
6.5.10 Fylde Coast

7 Ground freezing

J.S. HARRIS

7.1 Introduction
7.2 The method
7.3 Methods of refrigeration
7.3.1 On-site mechanical plant
7.3.2 Off-site-produced expendable refrigerant
7.4 The properties of frozen ground
7.4.1 Strength and creep
7.4.2 Frost heave
7.4.3 Concreting
7.5 Design
7.5.1 Structural
8 Underpinning by chemical grouting
G.S. LITTLEJOHN

8.1 Historical introduction
8.2 Ground investigation
8.3 Principles of injection
 8.3.1 Permeation of porous ground
8.4 Grout systems
 8.4.1 Grout selection
 8.4.2 Viscosity
 8.4.3 Setting time
 8.4.4 Stability
 8.4.5 Strength of grouted formation
 8.4.6 Creep of grouted formation
 8.4.7 Resistance of grout to extrusion
 8.4.8 Permanence
 8.4.9 Health and safety aspects
8.5 Grouting operations
8.6 Applications
 8.6.1 Ground treatment at Wuppertal, West Germany
 8.6.2 Increase of formation strength, Minneapolis, Minnesota
 8.6.3 Ground strengthening at East Greenwich sewer, London
 8.6.4 Reduction in pile settlement at Jeddah, Saudi Arabia
 8.6.5 Underpinning of multistorey blocks, Paris
8.7 Conclusions
References

9 Lateral shores and strutting
P. LIGHT

9.1 Historical background
9.2 Types and purposes of strutting
9.3 Responsibilities and relationships
9.4 Design considerations
9.5 Construction considerations
9.6 Quality management
9.7 Possible future developments
Acknowledgements
References

10 Soil anchorages
G.S. LITTLEJOHN

10.1 Introduction
10.2 Definition
10.3 Site investigation
11.5.5 Slope claddings 360
11.5.6 Instrumentation and monitoring 361
11.6 Design 362
11.6.1 Background 362
11.6.2 Ultimate nail capacities 362
11.6.3 Mobilized nail forces 362
11.6.4 Stability computation procedures 365
11.6.5 Development of design methodology 368
11.7 Data from published case histories 369
11.7.1 Derived parameters 369
11.7.2 Observations on case histories 370
11.8 Two recent case histories 373
11.8.1 Excavation for tunnel portal, Edmonton, Alberta, Canada 373
11.8.2 Design construction and performance of a soil-nailed wall in Seattle, Washington 382
11.9 Final remarks 391
Acknowledgements 392
References 392

Index 395