Support of Underground Excavations in Hard Rock

E. HOEK
Vancouver, B.C., Canada

P.K. KAISER
Geomechanics Research Centre, Laurentian University, Sudbury, Ont., Canada

W.F. BAWDEN
Department of Mining Engineering, Queen's University, Kingston, Ont., Canada

A.A. Balkema/Rotterdam/Brookfield/1995
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>IX</td>
</tr>
<tr>
<td>Preface</td>
<td>XI</td>
</tr>
<tr>
<td>1 An overview of rock support design</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Stages in mine development</td>
<td></td>
</tr>
<tr>
<td>1.2.1 Exploration and preliminary design</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Mine design</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3 Early years of mining</td>
<td>4</td>
</tr>
<tr>
<td>1.2.4 Later years of mining</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Support design</td>
<td>7</td>
</tr>
<tr>
<td>2 Assessing acceptable risks in design</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Factor of safety</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Sensitivity studies</td>
<td>10</td>
</tr>
<tr>
<td>2.4 The application of probability to design</td>
<td>10</td>
</tr>
<tr>
<td>2.5 Probability of failure</td>
<td>15</td>
</tr>
<tr>
<td>2.6 Problems to which probability cannot be applied</td>
<td>18</td>
</tr>
<tr>
<td>3 Evaluation of engineering geological data</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>20</td>
</tr>
<tr>
<td>3.2 Engineering geological data collection</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Structural geological terms</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Structural geological data collection</td>
<td>22</td>
</tr>
<tr>
<td>3.5 Structural geological data presentation</td>
<td>23</td>
</tr>
<tr>
<td>3.6 Geological data analysis</td>
<td>24</td>
</tr>
<tr>
<td>4 Rock mass classification</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>27</td>
</tr>
<tr>
<td>4.2 Engineering rock mass classification</td>
<td>27</td>
</tr>
<tr>
<td>4.2.1 Terzaghi’s rock mass classification</td>
<td>28</td>
</tr>
<tr>
<td>4.2.2 Classifications involving stand-up time</td>
<td>29</td>
</tr>
<tr>
<td>4.2.3 Rock quality designation index (RQD)</td>
<td>29</td>
</tr>
<tr>
<td>4.2.4 Rock structure rating (RSR)</td>
<td>31</td>
</tr>
<tr>
<td>4.3 Geomechanics classification</td>
<td>33</td>
</tr>
<tr>
<td>4.4 Modifications to RMR for mining</td>
<td>37</td>
</tr>
<tr>
<td>4.5 Rock tunnelling quality index, Q</td>
<td>37</td>
</tr>
<tr>
<td>4.6 Using rock mass classification systems</td>
<td>44</td>
</tr>
<tr>
<td>4.7 Estimation of in situ deformation modulus</td>
<td>45</td>
</tr>
<tr>
<td>5 Shear strength of discontinuities</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>48</td>
</tr>
<tr>
<td>5.2 Shear strength of planar surfaces</td>
<td>48</td>
</tr>
<tr>
<td>5.3 Shear strength of rough surfaces</td>
<td>49</td>
</tr>
<tr>
<td>5.3.1 Field estimates of JRC</td>
<td>51</td>
</tr>
</tbody>
</table>
5.3.2 Field estimates of JCS
5.3.3 Influence of scale on JRC and JCS
5.4 Shear strength of filled discontinuities
5.5 Influence of water pressure
5.6 Instantaneous cohesion and friction

6 Analysis of structurally controlled instability
6.1 Introduction
6.2 Identification of potential wedges
6.3 Support to control wedge failure
 6.3.1 Rock bolting wedges
 6.3.2 Shotcrete support for wedges
6.4 Consideration of excavation sequence
6.5 Application of probability theory

7 In situ and induced stresses
7.1 Introduction
7.2 In situ stresses
 7.2.1 The World Stress Map
 7.2.2 Developing a stress measuring programme
7.3 Analysis of induced stresses
 7.3.1 Numerical methods of stress analysis
 7.3.2 Two-dimensional and three-dimensional models
 7.3.3 Stress analysis using the program PHASES

8 Strength of rock and rock masses
8.1 Introduction
8.2 Definition of the problem
8.3 Strength of intact rock
8.4 The strength of jointed rock masses
8.5 Use of rock mass classifications for estimating GSI
8.6 When to use the Hoek-Brown failure criterion

9 Support design for overstressed rock
9.1 Introduction
9.2 Support interaction analysis
 9.2.1 Definition of failure criterion
 9.2.2 Analysis of tunnel behaviour
 9.2.3 Deformation of an unsupported tunnel
 9.2.4 Deformation characteristics of support
 9.2.5 Estimates of support capacity
 9.2.6 Support interaction example
9.3 The PHASES program
 9.3.1 Support interaction analysis using PHASES

10 Progressive spalling in massive brittle rock
10.1 Introduction
10.2 Examples of spalling in underground excavations
10.3 The AECL Underground Research Laboratory
 10.3.1 In situ stresses at 420 level
 10.3.2 Properties of Lac du Bonnet granite
 10.3.3 URL Rooms 413 and 405
 10.3.4 URL Test tunnel
Table of contents

10.4 Example from El Teniente Mine, Chile 119
10.5 South African experience 120
10.6 Implications for support design 124
 10.6.1 Rockbolting 124
 10.6.2 Shotcrete 125
 10.6.3 Discussion 125

11 Typical support applications 127
 11.1 Introduction 127
 11.2 ‘Safety’ support systems 127
 11.3 Permanent mining excavations 131
 11.4 Drawpoints and orepasses 132
 11.5 Small openings in blocky rock 136
 11.6 Small openings in heavily jointed rock 138
 11.7 Pre-support of openings 142
 11.7.1 Cut and fill stope support 143
 11.7.2 Pre-reinforcement of permanent openings 146
 11.7.3 Reinforcement of non-entry stopes 149

12 Rockbolts and dowels 152
 12.1 Introduction 152
 12.2 Rockbolts
 12.2.1 Mechanically anchored rockbolts 152
 12.2.2 Resin anchored rockbolts 156
 12.3 Dowels
 12.3.1 Grouted dowels 158
 12.3.2 Friction dowels or ‘Split Set’ stabilisers 159
 12.3.3 ‘Swelllex’ dowels 160
 12.4 Load-deformation characteristics 161

13 Cablebolt reinforcement 165
 13.1 Introduction 165
 13.2 Cablebolt hardware 165
 13.3 Cablebolt bond strength 167
 13.4 Grouts and grouting 168
 13.5 Cablebolt installation 171
 13.6 Modified cablebolts 174

14 The Stability Graph method 176
 14.1 Introduction 176
 14.2 The Stability Graph method
 14.2.1 The stability number, N’ 176
 14.2.2 The shape factor, S 180
 14.2.3 The stability graph 180
 14.3 Cablebolt design 181
 14.4 Discussion of the method 182
 14.5 Worked stability graph example
 14.5.1 Structural geology 183
 14.5.2 Q’ classification 183
 14.5.3 Preliminary stope design 184

15 Shotcrete support 190
 15.1 Introduction 190
15.2 Shotcrete technology 190
 15.2.1 Dry mix shotcrete 190
 15.2.2 Wet mix shotcrete 191
 15.2.3 Steel fibre reinforced microsilica shotcrete 192
 15.2.4 Mesh reinforced shotcrete 194
15.3 Shotcrete application 195
15.4 Design of shotcrete support 198

References 201

Software information 209

Author index 211

Subject index 213